SCHOOL OF INFORMATION, COMPUTER AND COMMUNICATION TECHNOLOGY SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY THAMMASAT UNIVERSITY

 LAB REPORT
 <line>
 ECS 2XX BASIC ELECTRICAL ENGINEERING LABORATORY
 <line>
 EXPERIMENT 0 INTRODUCTION
 <line>
 By
 <line>
 Mr. A ID. 0000000000
 Ms. B ID. 0000000000
 <line>
 Group No. 12 Section 1
 <line>
 Date: 19 November 2009, Time: 13:00-16:00
 <line>
 <line>
 <line>

OBJECTIVES

210

1. To introduce the course ECS 204 Basic Electrical Engineering Lab.
2. To understand the concept of basic equipment and components in the laboratory and to be able to use them correctly in the subsequent experiments.
<Attach all of original (hand-written) results that your group recorded during the lab with TAs' signatures.>

EXPERIMENTAL RESULTS (PRINTED)
In this page you rewrite the results obtained in the lab. Example is shown below.
No TA signature appears here.

Table 1

	Part A		Part B		Part C		
	R_{1}	R_{2}	R_{1}	R_{2}	R_{1}	R_{2}	R_{3}
Resistance (Ω)	3333	4444	5555	6666	7777	8888	9999
Voltage (\mathbf{V})	1	2	3	4	5	6	7
Current (\mathbf{A})	0.1	0.2	0.3	0.4	0.5	0.6	0.7

DISCUSSION

1. Summarize related theory and the way to compute the calculated values that are asked in the experiment.
2. Show the percentage error between calculations and measurements of all values.

Calculations

In Part A.

We use the formula below to obtain the calculated value.

$$
V_{1}=\frac{V_{p s} \times R_{1}}{R_{1}+R_{2}} .
$$

- Calculate the value $V_{1}, V_{1}=\frac{12 \times 2000}{1000+2000}=8$ volt .
- Calculate the value $V_{2}, V_{2}=\frac{12 \times 1000}{1000+2000}=4$ volt.

In Part B.

In Part C.

Percentage Error

	Part A		Part B		Part C		
	R_{1}	R_{2}	R_{1}	R_{2}	R_{1}	R_{2}	R_{3}
Resistance (Ω)	3%	4%	5%	6%	7%	8%	9%
Voltage (V)	0.1%	0.2%	0.3%	0.4%	0.5%	0.6%	0.7%
Current (A)	0.11%	0.22%	0.33%	0.44%	0.55%	0.66%	0.77%

Example of Percentage error Calculation

Note that the percentage error above is computed from the formula

$$
\text { error }=\frac{(\text { measured }- \text { calculated })}{\text { measured }} \times 100 \% .
$$

CONCLUSION

In the conclusion you must state your understanding according to the objectives of the experiment, as well as the knowledge gained from the experiment. Explain the things about which you are concerned in the lab.

QUSETIONS

Type the answers carefully. Make sure that you provide enough explanation/derivation.

